Improved Bounds for Shortest Paths in Dense Distance Graphs

نویسندگان

  • Pawel Gawrychowski
  • Adam Karczmarz
چکیده

We study the problem of computing shortest paths in so-called dense distance graphs. Every planar graph G on n vertices can be partitioned into a set of O(n/r) edge-disjoint regions (called an r-division) with O(r) vertices each, such that each region has O( √ r) vertices (called boundary vertices) in common with other regions. A dense distance graph of a region is a complete graph containing all-pairs distances between its boundary nodes. A dense distance graph of an r-division is the union of the O(n/r) dense distance graphs of the individual pieces. Since the introduction of dense distance graphs by Fakcharoenphol and Rao [4], computing single-source shortest paths in dense distance graphs has found numerous applications in fundamental planar graph algorithms. Fakcharoenphol and Rao [4] proposed an algorithm (later called FR-Dijkstra) for computing singlesource shortest paths in a dense distance graph in O ( n √ r logn log r ) time. We show an

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved algorithms for replacement paths problems in restricted graphs

We present near-optimal algorithms for two problems related to finding the replacement paths for edges with respect to shortest paths in sparse graphs. The problems essentially study how the shortest paths change as edges on the path fail, one at a time. Our technique improves the existing bounds for these problems on directed acyclic graphs, planar graphs, and non-planar integer-edge-weighted ...

متن کامل

Conditional Hardness for Sensitivity Problems

In recent years it has become popular to study dynamic problems in a sensitivity setting: Instead of allowing for an arbitrary sequence of updates, the sensitivity model only allows to apply batch updates of small size to the original input data. The sensitivity model is particularly appealing since recent strong conditional lower bounds ruled out fast algorithms for many dynamic problems, such...

متن کامل

Multiple-Source Shortest Paths in Embedded Graphs

Let G be a directed graph with n vertices and non-negative weights in its directed edges, embedded on a surface of genus g, and let f be an arbitrary face of G. We describe a randomized algorithm to preprocess the graph in O(gn log n) time with high probability, so that the shortest-path distance from any vertex on the boundary of f to any other vertex in G can be retrieved in O(log n) time. Ou...

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

Faster shortest paths in dense distance graphs, with applications

We show how to combine two techniques for efficiently computing shortest paths in directed planar graphs. The first is the linear-time shortest-path algorithm of Henzinger, Klein, Subramanian, and Rao [STOC’94]. The second is Fakcharoenphol and Rao’s algorithm [FOCS’01] for emulating Dijkstra’s algorithm on the dense distance graph (DDG). A DDG is defined for a decomposition of a planar graph G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1602.07013  شماره 

صفحات  -

تاریخ انتشار 2016